Co2 описание. Углекислый газ, он же углекислота, он же двуокись углерода…. Получение двуокиси углерода

За последние годы перспективность CO 2 как хладагента заметно возросла. Диоксид углерода - один из немногих хладагентов для холодильных систем, актуальный с точки зрения эффективности применения и безопасности для окружающей среды. Применение традиционных хладагентов ограничивается различными нормативами, причем во всем мире наблюдается тенденция к их ужесточению. В связи с этим природные хладагенты находят все большее применение. Мы начинаем рубрику, посвященную использованию хладагента CO 2 в области искусственного холода.

Хладагент CO 2 принадлежит к группе так называемых природных хладагентов (аммиак, пропан, бутан, вода и др.) имеющий нулевой потенциал разрушения озонового слоя Земли (ODP=0) и являющийся эталонной единицей при расчете потенциала глобального потепления (GWP=1). У каждого из природных хладагентов есть свои недостатки, например, аммиак токсичен, пропан горюч, а у воды ограниченная область применения. В отличие от них CO 2 не токсичен и не горюч, хотя его влияние на окружающую среду не однозначно. С одной стороны, CO 2 содержится в окружающем нас воздухе и необходим для протекания жизненных процессов. С другой стороны, считается, что большая концентрация углекислоты в воздухе является одной из причин глобального потепления.

Инициатива вернуться к использованию CO 2 в холодильной технике принадлежит скандинавским странам, где законы значительно ограничивают использование хладагентов HFC и HCFC. В качестве хладагента для промышленных установок традиционно применяется аммиак, но его количество в системе ограничено. Это не является проблемой для установок, работающих на высокие и средние температуры (до -15/-25°С), где количество аммиака сокращается применением вторичного хладоносителя. Для более низких температур применение вторичного хладоносителя неэффективно из-за больших потерь на разнице температур, в этом случае используют CO 2 .

На рисунке выше приведена фазовая диаграмма CO 2 . Кривые линии, которые разделяют диаграмму на отдельные участки, определяют предельные значения давлений и температур для различных фаз: жидкой, твёрдой, паровой или сверхкритической. Точки на этих кривых определяют давления и соответствующие им температуры, при которых две фазы находятся в равновесном состоянии, например, твёрдая и паровая, жидкая и паровая, твёрдая и жидкая.

При атмосферном давлении CO 2 существует в твёрдой или паровой фазах. При таком давлении жидкая фаза не существует. При температурах ниже –78,4°C диоксид углерода находится в твёрдой фазе («сухой лёд»). При повышении температуры CO 2 сублимирует в паровую фазу. При давлении 5,2 бар и температуре –56,6°C хладагент достигает, так назы-ваемой, тройной точки. В этой точке все три фазы существуют в равновесном состоянии. При температуре +31,1°C CO 2 достигает своей критической точки, где его плотности вжидкостной и паровой фазе одинаковые (рисунок выше). Следовательно, различие между двумя фазами исчезает и CO 2 существует в сверхкритическом состоянии.

Диоксид углерода может использоваться в качестве хладагента в холодильных системах различных типов, как субкритических, так и транскритических. При использовании CO 2 в качестве хладагента необходимо учитывать как тройную, так и критическую точку для любых типов холодильных систем. В субкритическом цикле CO 2 (рисунок выше) весь диапазон рабочих температур и давлений лежит между критической и тройной точками. Одноступенчатые холодильные циклы CO 2 аналогичны другим хладагентам, но имеют некоторые неблагоприятные факторы, связанные в первую очередь с ограничением значений температур и давлений.

Транскритические холодильные системы на CO 2 в настоящее время используются в небольших и коммерческих холодильных установках, а именно: в мобильных системах кондиционирования воздуха, небольших тепловых насосах и системах охлаждения супермаркетов. Транскритические системы практически не применяются в промышленных холодильных установках. Рабочее давление в субкритическом цикле обычно находится в диапазоне от 5,7 до 35 бар при соответствующей температуре от –55 до 0°C. При оттаивании испарителя горячим газом значение рабочего давления увеличивается примерно на 10 бар.

Наиболее широко CO 2 применяется в каскадных системах промышленных холодильных установок. Это обусловлено тем, что диапазон рабочих давлений позволяет использовать стандартное оборудование (компрессоры, регуляторы и клапаны).

Существуют различные виды каскадных холодильных систем на CO 2: системы с непосредственным кипением, системы с насосной циркуляцией, системы на CO 2 со вторичным рассольным контуром или комбинации этих систем.

Применение углекислоты (двуокиси углерода)

В настоящее время углекислота во всех своих состояниях широко используется во всех отраслях промышленности и агропромышленного комплекса.

В газообразном состоянии (углекислый газ)

В пищевой промышленности

1. Для создания инертной бактериостатичной и фунгистатичной атмосферы (при концентрации свыше 20%):
· при переработке растительных и животных продуктов;
· при упаковке пищевых продуктов и медицинских препаратов для значительного увеличения срока их хранения;
· при разливе пива, вина и соков как вытесняющий газ.
2. В производстве безалкогольных напитков и минеральных вод (сатурация).
3. В пивоварении и производстве шампанского и шипучих вин (карбонизация).
4. Приготовление газированных воды и напитков сифонами и сатураторами, для персонала горячих цехов и в летнее время.
5. Использование в торговых автоматах при продаже газ.воды в розлив и при ручной торговле пивом и квасом, газированными водой и напитками.
6. При изготовлении газированных молочных напитков и газированных фруктово-ягодных соков («игристые продукты»).
7. В производстве сахара (дефекация - сатурация).
8. Для длительной консервации фруктовых и овощных соков с сохранением запаха и вкуса свежевыжатого продукта путём насыщения СО2 и хранения под высоким давлением.
9. Для интенсификации процессов осаждения и удаления солей винной кислоты из вин и соков (детартация).
10. Для приготовления питьевой опреснённой воды фильтрационным методом. Для насыщения бессолевой питьевой воды ионами кальция и магния.

В производстве, хранении и переработке сельскохозяйственной продукции

11. Для увеличения срока хранения пищевых продуктов, овощей и фруктов в регулируемой атмосфере (в 2-5 раз).
12. Хранение срезанных цветов 20 и более дней в атмосфере углекислого газа.
13. Хранение круп, макарон, зерна, сухофруктов и других продуктов питания в атмосфере углекислого газа, для предохранения их от повреждения насекомыми и грызунами.
14. Для обработки плодов и ягод перед закладкой на хранение, что препятствует развитию грибковых и бактериальных гнилей.
15. Для насыщения под высоким давлением нарезанных или целиковых овощей, что усиливает вкусовые оттенки («игристые продукты») и улучшает их сохраняемость.
16. Для улучшения роста и повышения урожайности растений в защищённом грунте.
На сегодняшний день в овощеводческих и цветоводческих хозяйствах России остро стоит вопрос об осуществлении подкормок углекислым газом растений в защищённом грунте. Дефицит СО2 является более серьёзной проблемой, чем дефицит элементов минерального питания. В среднем, растение синтезирует из воды и углекислого газа 94% массы сухого вещества, остальные 6% растение получает из минеральных удобрений! Низкое содержание углекислого газа сейчас является фактором, ограничивающим урожайность (в первую очередь при малообъёмной культуре). В воздухе теплицы площадью 1 га содержится около 20 кг СО2. При максимальных же уровнях освещения в весенние и летние месяцы потребление СО2 растениями огурца в процессе фотосинтеза может приближаться к 50 кг·ч/га (т.е. до 700 кг/га СО2 за световой день). Образующийся дефицит лишь частично покрывается за счёт притока атмосферного воздуха через фрамуги и неплотности ограждающих конструкций, а также за счёт ночного дыхания растений. В грунтовых теплицах дополнительным источником углекислого газа является грунт, заправленный навозом, торфом, соломой или опилками. Эффект обогащения воздуха теплицы углекислым газом зависит от количества и вида этих органических веществ, подвергающихся микробиологическому разложению. Например, при внесении опилок, смоченными минеральными удобрениями, уровень углекислого газа в первое время может достигать высоких значений ночью, и днём при закрытых фрамугах. Однако в целом этот эффект недостаточно велик и удовлетворяет лишь часть потребности растений. Основным недостатком биологических источников является кратковременность повышения концентрации углекислого газа до желаемого уровня, а также невозможность регулирования процесса подкормки. Нередко в грунтовых теплицах в солнечные дни при недостаточном воздухообмене содержание СО2 в результате интенсивного поглощения растениями может упасть ниже 0,01% и фотосинтез практически прекращается! Недостаток СО2 становится основным из факторов, ограничивающих ассимиляцию углеводов и соответственно рост и развитие растений. Полностью покрыть дефицит возможно только за счёт использования технических источников углекислого газа.
17. Производство микроводорослей для скота. При насыщении воды углекислотой в установках автономного выращивания водорослей, значительно (в 4-6 раз) возрастает скорость водорослей.
18. Для повышения качества силоса. При силосовании сочных кормов искусственное введение в растительную массу СО2 предотвращает проникновение кислорода из воздуха, что способствует образованию высококачественного продукта, с благоприятным соотношением органических кислот повышенным содержанием каротина и переваримого протеина.
19. Для безопасной дезинсекции продовольственных и непродовольственных продуктов. Атмосфера, содержащая более 60% углекислого газа в течении 1-10 дней (в зависимости от температуры) уничтожает не только взрослых насекомых, но их личинки и яйца. Настоящая технология применима к продуктам с содержанием связанной воды до 20%, как то зерно, рис, грибы, сухофрукты, орехи и какао, комбикорма и многое другое.
20. Для тотального уничтожения мышевидных грызунов путём кратковременного заполнения газом нор, хранилищ, камер (достаточная концентрация 30% углекислого газа).
21. Для анаэробной пастеризации кормов для животных, в смеси с водяным паром при температуре, не превышающей 83 град.С - как замена гранулированию и экструдированию, не требующая больших энергетических затрат.
22. Для усыпления птицы и некрупных животных (свиньи, телята, овцы) перед забоем. Для анестезии рыбы при перевозке.
23. Для наркотизации пчелиных и шмелиных маток в целях ускорения начала яйцекладки.
24. Для насыщения питьевой воды для кур, что значительно снижает отрицательное воздействие повышенных летних температур на птицу, способствует утолщению скорлупы яиц и укреплению костяка.
25. Для насыщения рабочих растворов фунгицидов и гербицидов для лучшего действия препаратов. Этот способ позволяет уменьшить расход раствора на 20-30%.

В медицине

26. а) в смеси с кислородом как стимулятор дыхания (в концентрации 5%);
б) для сухих газированных ванн (в концентрации 15-30%) в целях снижения артериального давления и улучшения кровотока.
27. Криотерапия в дерматологии, сухие и водяные углекислотные ванны в бальнеолечении, дыхательные смеси в хирургии.

В химической и бумажной промышленности

28. Для производства соды, углеаммонийных солей (применяются в качестве удобрений в растениеводстве, добавок в корм жвачным животным, вместо дрожжей в хлебопечении и в мучных кондитерских изделиях), свинцовых белил, мочевины, оксикарбоновых кислот. Для каталитического синтеза метанола и формальдегида.
29. Для нейтрализации щелочных сточных вод. Благодаря эффекту самобуферизации раствора, точное регулирование pH позволяет избежать коррозии оборудования и сточных труб, нет образования ядовитых побочных продуктов.
30. В производстве бумаги для обработки пульпы после щелочного беления (повышает на 15% эффективности процесса).
31. Для увеличения выхода и улучшения физико-механических свойств и белимости целлюлозы при кислородно-содовой варке древесины.
32. Для очистки теплообменников от накипи и предотвращения её образования (комбинация гидродинамического и химического способов).

В строительной и прочих отраслях промышленности

33. Для быстрого химического отвердения пресс-форм для стального и чугунного литья. Подача углекислоты в литейные формы в 20-25 раз ускоряет их твердение по сравнению с тепловой сушкой.
34. Как вспенивающий газ при производстве пористых пластиков.
35. Для упрочнения огнеупорного кирпича.
36. Для сварочных полуавтоматов при ремонте кузовов пассажирских и легковых автомобилей, ремонте кабин грузовых автомобилей и тракторов и при эл.сварке изделий из тонколистовых сталей.
37. При изготовлении сварных конструкций с автоматической и полуавтоматической электросваркой в среде углекислоты как защитного газа. По сравнению со сваркой штучным электродом возрастает удобство работы, производительность повышается в 2-4 раза, стоимость 1 кг наплавленного металла в среде СО2 в два с лишним раза ниже по сравнению с ручной дуговой сваркой.
38. В качестве защитной среды в смесях с инертными и благородными газами при автоматизированной сварке и резке металла, благодаря которой получаются швы очень высокого качества.
39. Зарядка и перезарядка огнетушителей, для противопожарного оборудования. В системах пожаротушения, для заполнения огнетушителей.
40. Зарядка баллончиков для газобаллонного оружия и сифонов.
41. Как газ-распылитель в аэрозольных баллончиках.
42. Для заполнения спортивного инвентаря (мячей, шаров и т.п.).
43. В качестве активной среды в медицинских и промышленных лазерах.
44. Для точной калибровки приборов.

В горно-добывающей промышленности

45. Для разупрочнения углепородного массива при добыче каменного угля в удароопасных пластах.
46. Для проведения взрывных работ без образования пламени.
47. Повышение эффективности нефтедобычи при добавлении углекислоты в нефтяные пласты.

В жидком состоянии (низкотемпературная углекислота)

В пищевой промышленности

1. Для быстрого замораживания, до температуры -18 град.С и ниже, пищевых продуктов в контактных скороморозильных аппаратах. Наряду с жидким азотом жидкий диоксид углерода наиболее подходит для прямого контактного замораживания различных видов продуктов. Как контактный хладагент, он привлекателен дешевизной, химической пассивностью и термической стабильностью, не коррозирует металлических узлов, не горюч, не опасен для персонала. На движущийся на ленте транспортёра продукт из сопел подаётся определёнными порциями жидкая углекислота, которая при атмосферном давлении мгновенно превращается в смесь сухого снега и холодного углекислого газа, при этом вентиляторы постоянно перемешивают газовую смесь внутри аппарата, которая в принципе способна охладить продукт от +20 град.С до -78,5 град.С за несколько минут. Использование контактных скороморозильных аппаратов имеет ряд принципиальных преимуществ по сравнению с традиционной технологией заморозки:
· время заморозки сокращается до 5-30 минут; быстро прекращается ферментативная активность в продукте;
· хорошо сохраняется структура тканей и клетки продукта, поскольку кристаллы льда формируются значительно меньших размеров и практически одновременно в клетках и в межклеточном пространстве тканей;
· при медленной заморозке в продукте появляются следы жизнедеятельности бактерий, в то время как при шоковой заморозке они просто не успевают развиться;
· потери массы продукта в результате усушки составляют всего 0,3-1% (против 3-6%);
· легко улетучивающиеся ценные ароматические вещества сохранятся в значительно больших количествах. По сравнению с замораживанием жидким азотом, при замораживании диоксидом углерода:
· не наблюдается растрескивание продукта из-за слишком большого перепада температуры между поверхностью и сердцевиной замораживаемого продукта
· в процессе замораживания СО2 проникает в продукт и во время размораживания защищает его от окисления и развития микроорганизмов. Плоды и овощи, подвергнутые быстрой заморозке и фасовке на месте, наиболее полно сохраняют вкусовые достоинства и питательную ценность, все витамины и биологически активные вещества, что дает возможность широко применять их для производства продуктов для детского и диетического питания. Немаловажно, что для приготовления дорогостоящих замороженных смесей может быть успешно использована нестандартная плодоовощная продукция. Скороморозильные аппараты на жидкой углекислоте компактны, просты по устройству и недороги в эксплуатации (при наличии рядом источника дешёвой жидкой углекислоты). Аппараты существуют в мобильном и стационарном варианте, спирального, тоннельного и шкафного типа, чем представляют интерес для сельскохозяйственных производителей и переработчиков продукции. Особенно они удобны, когда производство требует замораживания различных пищевых продуктов и сырья при различных температурных режимах (-10…-70 град.С). Быстрозамороженные продукты можно подвергнуть сушке в условиях глубокого вакуума - сублимационной сушке. Продукты, высушенные этим способом, отличаются высоким качеством: сохраняют все питательные вещества, обладают повышенной восстанавливающей способностью, имеют незначительную усадку и пористое строение, сохраняют естественный цвет. Сублимированные продукты в 10 раз легче исходных за счет удаления из них воды, они очень долго сохраняются в герметичных пакетах (особенно при заполнении пакетов углекислым газом) и могут дёшево доставляться в самые отдаленные районы.
2. Для быстрого охлаждения свежих пищевых продуктов в упакованном и неупакованном виде до +2…+6 град.С. При помощи установок, работа которых похожа на работу скороморозильных аппаратов: при инжекции жидкой углекислоты образуется мельчайший сухой снег, которым продукт обрабатывается определённое время. Сухой снег - эффективное средство быстрого снижения температуры, не приводящее к высыханию продукта, как воздушное охлаждение, и не повышающее его влагосодержание, как это происходит при охлаждении водяным льдом. Охлаждение сухим снегом обеспечивает необходимое снижение температуры всего за несколько минут, а не часов, как при обычном охлаждении. Сохраняется и даже улучшается естественный цвет продукта вследствие небольшой диффузии СО2 внутрь. Одновременно значительно увеличивается срок хранения продуктов, так как СО2 подавляет развитие как аэробных, так анаэробных бактерий и плесневых грибов. Охлаждению удобно и выгодно подвергать мясо птицы (разделанное или в тушках), порционное мясо, колбасы и полуфабрикаты. Установки также применяются там, где по технологии требуется быстро охладить продукт во время или перед формовкой, прессованием, экструдированием, измельчением или нарезанием. Аппараты подобного типа также очень удобны для применения на птицефабриках поточного сверхбыстрого охлаждения с 42,7 град.С до 4,4-7,2 град.С свежеснесённых куриных яиц.
3. Для снятия кожицы с ягод методом подморозки.
4. Для криоконсервации спермы и эмбрионов крупного рогатого скота и свиней.

В холодильной промышленности

5. Для использования в качестве альтернативного хладагента в холодильных установках. Диоксид углерода может служить эффективным хладагентом, поскольку имеет низкую критическую температуру (31,1 град.С), сравнительно высокую температуру тройной точки (-56 град.С), большое давление в тройной точке (0,5 мПа) и высокое критическое давление (7,39 мПа). Как хладагент обладает следующими преимуществами:
· очень низкая цена по сравнению с другими хладагентами;
· нетоксичен, не горюч и не взрывоопасен;
· совместим со всеми электроизоляционными и конструкционными материалами;
· не разрушает озоновый слой;
· вносит умеренный вклад в увеличение парникового эффекта по сравнению с современными галоидопроизводными хладагентами. Высокое критическое давление имеет положительный аспект, связанный с низкой степенью сжатия, вследствие чего эффективность компрессора становится значительной, что позволяет применять компактные и мало затратные конструктивные решения для холодильных установок. Вместе с этим требуется дополнительное охлаждение электромотора конденсатора, увеличивается металлоёмкость холодильной установки из-за увеличения толщины труб и стенок. Перспективно применения СО2 в низкотемпературных двухкаскадных установках промышленного и полупромышленного применения, и особенно в системах кондиционирования воздуха автомобилей и поездов.
6. Для высокопроизводительного измельчения в замороженном виде мягких, термопластичных и упругих продуктов и веществ. В криогенных мельницах быстро и с малым расходом электроэнергии подвергаются размолу в замороженном виде те продукты и вещества, которые не удаётся измельчить в обычном виде, например желатин, каучук и резина, любые полимеры, шины. Холодный размол в сухой инертной атмосфере необходим для всех пряностей и специй, какао-бобов и кофейных зёрен.
7. Для испытания технических систем при низких температурах.

В металлургии

8. Для охлаждения труднообрабатываемых сплавов при обработке на токарных станках.
9. Для образования защитной среды для подавления дыма в процессах выплавки или разлива меди, никеля, цинка и свинца.
10. При отжиге твердой медной проволоки для кабельной продукции.

В добывающей промышленности

11. Как слабобризантное взрывчатое вещество при добыче каменного угля, не приводящее при взрыве к воспламенению метана и угольной пыли, и не дающее ядовитых газов.
12. Профилактика возгорания и взрывов вытеснением углекислотой воздуха из емкостей и шахт с взрывоопасными парами и газами.

В сверхкритическом состоянии

В процессах экстракции

1. Улавливание ароматических веществ из фруктово-ягодных соков, получение экстрактов растений и лекарственных трав с помощью жидкой углекислоты. В традиционных методах экстракции растительного и животного сырья применяются различного рода органические растворители, которые узко специфичны и редко обеспечивают извлечение из сырья полного комплекса биологически активных соединений. Более того, при этом всегда возникает проблема отделения от экстракта остатков растворителя, причем технологические параметры этого процесса могут привести к частичному или даже полному разрушению некоторых компонентов экстракта, что обуславливает изменение не только состава, но свойств выделенного экстракта. По сравнению с традиционными методами, процессы экстракции (а также фракционирования и импрегнации) с использованием диоксида углерода в сверхкритическом состоянии имеет целый ряд преимуществ:
· энергосберегающий характер процесса;
· высокая массообменная характеристика процесса благодаря низкой вязкости и высокой проникающей способности растворителя;
· высокая степень извлечения соответствующих компонентов и высокое качество получаемого продукта;
· практическое отсутствие СО2 в готовой продукции;
· используется инертная растворяющая среда при температурном режиме, не грозящем термической деградацией материалов;
· процесс не дает сточных вод и отработанных растворителей, после декомпрессии СО2 может быть собран и повторно использован;
· обеспечивается уникальная микробиологическая чистота получаемой продукции;
· отсутствие сложного оборудования и многостадийного процесса;
· используется дешёвый, нетоксичный и негорючий растворитель. Селективные и экстракционные свойства диоксида углерода могут меняться в широких пределах при изменении температуры и давления, что обуславливают возможность извлечения при низкой температуре из растительного сырья большей части спектра известных на сегодняшний день биологически активных соединений.
2. Для получения ценных натуральных продуктов - СО2-экстрактов пряновкусовых веществ, эфирных масел и биологически активных веществ. Экстракт практически копирует исходное растительное сырье, что же касается концентрации входящих в него веществ, то можно заявить об отсутствии аналогов среди классических экстрактов. Данные хроматографического анализа показывают, что содержание ценных веществ превосходит классические экстракты в десятки раз. Освоено получение в промышленных масштабах:
· экстрактов из пряностей и лекарственных трав;
· фруктовых ароматов;
· экстрактов и -кислот из хмеля;
· антиоксидантов, каротиноидов и ликопенов (в том числе из томатного сырья);
· натуральных красящих веществ (из плодов красного перца и других);
· ланолина из шерсти;
· натуральных растительных восков;
· масла из облепихи.
3. Для выделения высокоочищенных эфирных масел, в частности из цитрусовых. При экстракции сверхкритическим СО2 эфирных масел успешно экстрагируются и легколетучие фракции, которые придают этим маслам фиксирующие свойства, а также более полный аромат.
4. Для удаления кофеина из чая и кофе, никотина из табака.
5. Для удаления холестерина из продуктов питания (мясо, молочные продукты и яйца).
6. Для изготовления обезжиренных картофельных чипсов и соевых продуктов;
7. Для производства высококачественного табака с заданными технологическими свойствами.
8. Для химической чистки одежды.
9. Для удаления соединений урана и трансурановых элементов из радиоактивно заражённых почв и с поверхностей металлических тел. При этом в сотни раз сокращаются объёмы водных отходов, и нет необходимости в использовании агрессивных органических растворителей.
10. Для экологически чистой технологии травления печатных плат для микроэлектроники, без образования ядовитых жидких отходов.

В процессах фракционирования

Выделение жидкого вещества из раствора, либо разделение смеси жидких веществ носит название фракционирования. Эти процессы являются непрерывными и поэтому значительно более эффективны, чем выделение веществ из твёрдых субстратов.
11. Для рафинации и дезодорации масел и жиров. Для получения товарного масла необходимо провести целый комплекс мероприятий, таких как удаление лецитина, слизи, кислоты, произвести отбеливание, дезодорацию и прочие. При экстракции сверхкритическим СО2 эти процессы осуществляются в течение одного технологического цикла, причем качество получаемого в этом случае масла значительно лучше, поскольку процесс протекает при относительно низких температурах.
12. Для уменьшения содержания алкоголя в напитках. Изготовление безалкогольных традиционных напитков (вино, пиво, сидр) имеет увеличивающийся спрос по этическим, религиозным или диетическим соображениям. Даже если эти напитки с низким содержанием алкоголя зачастую имеют более низкое качество, их рынок значителен и быстро растет, так что улучшение подобной технологии представляет собой очень привлекательный вопрос.
13. Для энергосберегающего получения глицерина высокой чистоты.
14. Для энергосберегающего получения лецетина из соевого масла (с содержанием фосфатидил холина порядка 95%).
15. Для проточной очистки промышленных сточных вод от углеводородных загрязнителей.

В процессах импрегнации

Процесс импрегнации - внедрение новых веществ, в сущности, является обратным процессом экстракции. Нужное вещество растворяется в суперкритическом СО2, затем раствор проникает в твердый субстрат, при сбросе давления углекислый газ моментально улетучивается, а вещество остаётся в субстрате.
16. Для экологически чистой технологии крашения волокон, тканей и текстильных аксессуаров. Окрашивание является частным случаем применения импрегнации. Красители обычно растворены в токсичном органическом растворителе, поэтому окрашенные материалы приходится тщательно промывать, в результате чего растворитель либо испаряются в атмосферу, либо оказываются в сточных водах. При сверхкритическом окрашивании вода и растворители не используется, краситель растворён в сверхкритическом СО2. Этот метод дает интересную возможность окрашивать различные типы синтетических материалов одновременно, например, пластиковые зубцы и тканевую подкладку застежки-молнии.
17. Для экологически чистой технологии нанесение красок. Сухой краситель растворяется в потоке сверхкритического СО2, и вместе с ним вылетает из сопла специального пистолета. Углекислый газ сразу же улетучивается, а краска оседает на поверхности. Эта технология особенно перспективна для окраски автомобилей и крупногабаритной техники.
18. Для гомогенизированного пропитывания полимерных структур лекарственными препаратами, обеспечивая тем самым постоянное и длительное высвобождение лекарства в организме. Эта технология основана на способности сверхкритического СО2 легко проникать во многие полимеры, насыщать их, вызывая раскрытие в нём микропор и набухание.

В технологических процессах

19. Замена высокотемпературного водяного пара сверхкритическим СО2 в процессах экструзии, при переработке зерноподобного сырья, позволяет использовать относительно низкие температуры, вводить в рецептуру молочные ингредиенты и любые термочувствительные добавки. Сверхкритическая флюидная экструзия позволяет создавать новые продукты с ультрапористой внутренней структурой и гладкой плотной поверхностью.
20. Для получения порошков полимеров и жиров. Струя сверхкритического СО2 с растворёнными в нём некоторыми полимерами или жирами инжектируются в камеру с более низким давлением, где они «конденсируются» в виде совершенно однородного мелко дисперсного порошка, тончайших волокон или плёнок.
21. Для подготовки к сушке зелени и плодов путём удаления кутикулярного воскового слоя струёй сверхкритического СО2.

В процессах проведения химических реакций

22. Перспективным направлением применения сверхкритического СО2 является использование его в качестве инертной среды в ходе химических реакций полимеризации и синтеза. В сверхкритической среде синтез может проходить в тысячу раз быстрее по сравнению с синтезом тех же веществ в традиционных реакторах. Для промышленности очень важно, что столь значительное ускорение скорости реакций, обусловленное высокими концентрациями реагентов в сверхкритической среде с её низкой вязкостью и высокой диффузионной способностью, позволяет соответственно сократить время контакта реагентов. В технологическом плане это дает возможность заменить статические замкнутые реакторы проточными, принципиально меньшего размера, более дешёвыми и безопасными.

В тепловых процессах

23. В качестве рабочего тела для современных энергетических установок.
24. В качестве рабочего тела газовых тепловых насосов, производящих высокотемпературное тепло для систем горячего водоснабжения.

В твёрдом состоянии (сухой лёд и снег)

В пищевой промышленности

1. Для контактного замораживания мяса и рыбы.
2. Для контактного быстрого замораживания ягод (красной и чёрной смородины, крыжовника, малины, черноплодной рябины и других).
3. Реализация мороженого и прохладительных напитков в местах удаленных от электросети, с охлаждением сухим льдом.
4. При хранении, транспортировке и реализации замороженных и охлаждённых пищевых продуктов. Развивается производство брикетированного и гранулированного сухого льда для покупателей и продавцов скоропортящихся продуктов. Сухой лёд очень удобен для транспортировки и при реализации в жаркую погоду мяса, рыбы, мороженого - продукты остаются замороженными весьма продолжительное время. Поскольку сухой лёд только испаряется (сублимируется), растаявшей жидкости не бывает, и транспортные ёмкости остаются всегда чистыми. Авторефрежираторы могут оборудоваться малогабаритной сухолёдной системой охлаждения, которая характеризуются предельной простотой устройства и высокой надёжностью в работе; её стоимость во много раз ниже стоимости любой классической холодильной установки. При перевозках на короткие расстояния подобная система охлаждения является наиболее экономичной.
5. Для предварительного охлаждения контейнеров перед загрузкой продукции. Обдувание струей сухого снега в холодном углекислом газе является одним из самых эффективных способов предварительного охлаждения любых контейнеров.
6. При авиационных перевозках в качестве первичного хладагента в изотермических контейнерах с автономной двухступенчатой холодильной системой (гранулированный сухой лёд - фреон).

При работах по очистке поверхностей

8. Очистка деталей и узлов, двигателей от загрязнений очистными установками с применением гранул сухого льда в газовом потоке.Для очистки поверхностей узлов и деталей от эксплуатационных загрязнений. В последнее время возник большой спрос на безабразивную экспресс-очистку материалов, сухих и влажных поверхностей струей мелко гранулированного сухого льда (бластинг). Без разбора агрегатов можно успешно осуществлять:
· очистку линий сварки;
· удаление старой краски;
· очистку литейных форм;
· очистку узлов типографских машин;
· очистку оборудования для пищевой промышленности;
· очистку форм для производства пенополиуретановых изделий.
· очистку пресс-форм для производства автомобильных шин и других резинотехнических изделий;
· очистку форм для производства пластмассовых изделий, в том числе очистку форм для производства ПЭТ бутылок; Когда гранулы сухого льда ударяются о поверхность, они мгновенно испаряются, создавая микровзрыв, который снимает загрязнение с поверхности. При удалении хрупкого материала, такого как краска, процесс создает волну давления между покрытием и основой. Эта волна достаточно сильная для того, чтобы снять покрытие, приподняв его изнутри. При удалении тягучих или вязких материалов, таких как масло или грязь, процесс очистки подобен смыву сильной струей воды.
7. Для очистки от заусенцев штампованных изделий из резины и пластика (галтовка).

При строительных работах

9. В процессе изготовления пористых строительных материалов с одинаковым размером пузырьков углекислого газа, равномерно распределённых по всему объёму материала.
10. Для замораживания грунтов при строительстве.
11. Установка ледяных пробок в трубах с водой (методом их замораживания снаружи сухим льдом), на время проведения ремонтных работ на трубопроводах без слива воды.
12. Для очистки артезианских колодцев.
13. При снятии асфальтовых покрытий в жаркую погоду.

В прочих отраслях промышленности

14. Получение низких температур до минус 100 градусов (при смешивании сухого льда с эфиром) для испытания качества продукции, для лабораторных работ.
15. Для холодной посадки деталей в машиностроении.
16. При изготовлении пластичных сортов легированных и нержавеющих сталей, отожжённых алюминиевых сплавов.
17. При дроблении, помоле и консервации карбида кальция.
18. Для создания искусственного дождя и получения дополнительных осадков.
19. Искусственное рассеивание облаков и тумана, борьба с градобитием.
20. Для образования безвредного дыма при проведении спектаклей и концертов. Получение дым-эффекта, на сценах эстрады при выступлениях артистов, с помощью сухого льда.

В медицине

21. Для лечения некоторых кожных заболеваний (криотерапия).

Наиболее часто встречающиеся процессы образования этого соединения - гниение животных и растительных останков, горение различных видов топлива, дыхание животных и растений. Например, один человек за сутки выделяет в атмосферу около килограмма углекислого газа. Оксид и диоксид углерода могут образовываться и в неживой природе. Углекислый газ выделяется при вулканической деятельности, а также может быть добыт из минеральных водных источников. Углекислый газ находится в небольшим количестве и в атмосфере Земли.

Особенности химического строения данного соединения позволяют ему участвовать во множестве химических реакций, основой для которых является диоксид углерода.

Формула

В соединении этого вещества четырехвалентный атом углерода образовывает линейную связь с двумя молекулами кислорода. Внешний вид такой молекулы можно представить так:

Теория гибридизации объясняет строение молекулы диоксида углерода так: две существующие сигма-связи образованы между sp-орбиталями атомов углерода и двумя 2р-орбиталями кислорода; р-орбитали углерода, которые не принимают участие в гибридизации, связаны в соединении с аналогичными орбиталями кислорода. В химических реакциях углекислый газ записывается в виде: CO 2.

Физические свойства

При нормальных условиях диоксид углерода представляет собой бесцветный газ, не обладающий запахом. Он тяжелее воздуха, поэтому углекислый газ и может вести себя, как жидкость. Например, его можно переливать из одной емкости в другую. Это вещество немного растворяется в воде - в одном литре воды при 20 ⁰С растворяется около 0,88 л CO 2 . Небольшое понижение температуры кардинально меняет ситуацию - в том же литре воды при 17⁰С может раствориться 1,7 л CO 2 . При сильном охлаждении это вещество осаждается в виде снежных хлопьев - образуется так называемый «сухой лед». Такое название произошло от того, что при нормальном давлении вещество, минуя жидкую фазу, сразу превращается в газ. Жидкий диоксид углерода образуется при давлении чуть выше 0,6 МПа и при комнатной температуре.

Химические свойства

При взаимодействии с сильными окислителями 4-диоксид углерода проявляет окислительные свойства. Типичная реакция этого взаимодействия:

С + СО 2 = 2СО.

Так, при помощи угля диоксид углерода восстанавливается до своей двухвалентной модификации - угарного газа.

При нормальных условиях углекислый газ инертен. Но некоторые активные металлы могут в нем гореть, извлекая из соединения кислород и высвобождая газообразный углерод. Типичная реакция - горение магния:

2Mg + CO 2 = 2MgO + C.

В процессе реакции образуется оксид магния и свободный углерод.

В химических соединениях СО 2 часто проявляет свойства типичного кислотного оксида. Например, он реагирует с основаниями и основными оксидами. Результатом реакции становятся соли угольной кислоты.

Например, реакция соединения оксида натрия с углекислым газом может быть представлена так:

Na 2 O + CO 2 = Na 2 CO 3 ;

2NaOH + CO 2 = Na 2 CO 3 + H 2 O;

NaOH + CO 2 = NaHCO 3 .

Угольная кислота и раствор СО 2

Диоксид углерода в воде образует раствор с небольшой степенью диссоциации. Такой раствор углекислого газа называется угольной кислотой. Она бесцветна, слабо выражена и имеет кисловатый вкус.

Запись химической реакции:

CO 2 + H 2 O ↔ H 2 CO 3.

Равновесие довольно сильно сдвинуто влево - лишь около 1% начального углекислого газа превращается в угольную кислоту. Чем выше температура - тем меньше в растворе молекул угольной кислоты. При кипении соединения она исчезает полностью, и раствор распадается на диоксид углерода и воду. Структурная формула угольной кислоты представлена ниже.

Свойства угольной кислоты

Угольная кислота очень слабая. В растворах она распадается на ионы водорода Н + и соединения НСО 3 - . В очень небольшом количестве образуются ионы СО 3 - .

Угольная кислота - двухосновная, поэтому соли, образованные ею, могут быть средними и кислыми. Средние соли в русской химической традиции называются карбонатами, а сильные - гидрокарбонатами.

Качественная реакция

Одним из возможных способов обнаружения газообразного диоксида углерода является изменение прозрачности известкового раствора.

Ca(OH) 2 + CO 2 = CaCO 3 ↓ + H 2 O.

Этот опыт известен еще из школьного курса химии. В начале реакции образуется небольшое количество белого осадка, который впоследствии исчезает при пропускании через воду углекислого газа. Изменение прозрачности происходит потому, что в процессе взаимодействия нерастворимое соединение - карбонат кальция превращается в растворимое вещество - гидрокарбонат кальция. Реакция протекает по такому пути:

CaCO 3 + H 2 O + CO 2 = Ca(HCO 3) 2 .

Получение диоксида углерода

Если требуется получить небольшое количество СО2, можно запустить реакцию соляной кислоты с карбонатом кальция (мрамором). Химическая запись этого взаимодействия выглядит так:

CaCO 3 + HCl = CaCl 2 + H 2 O + CO 2 .

Также для этой цели используют реакции горения углеродсодержащих веществ, например ацетилена:

СН 4 + 2О 2 → 2H 2 O + CO 2 -.

Для сбора и хранения полученного газообразного вещества используют аппарат Киппа.

Для нужд промышленности и сельского хозяйства масштабы получения диоксида углерода должны быть большими. Популярным методом такой масштабной реакции является обжиг известняка, в результате которого получается диоксид углерода. Формула реакции приведена ниже:

CaCO 3 = CaO + CO 2 .

Применение диоксида углерода

Пищевая промышленность после масштабного получения «сухого льда» перешла на принципиально новый метод хранения продуктов. Он незаменим при производстве газированных напитков и минеральной воды. Содержание СО 2 в напитках придает им свежесть и заметно увеличивает срок хранения. А карбидизация минеральных вод позволяет избежать затхлости и неприятного вкуса.

В кулинарии часто используют метод погашения лимонной кислоты уксусом. Выделяющийся при этом углекислый газ придает пышность и легкость кондитерским изделиям.

Данное соединение часто используется в качестве пищевой добавки, повышающей срок хранения пищевых продуктах. Согласно международным нормам классификации химических добавок содержания в продуктах, проходит под кодом Е 290,

Порошкообразный углекислый газ - одно из наиболее популярных веществ, входящих в состав пожаротушительных смесей. Это вещество встречается и в пене огнетушителей.

Транспортировать и хранить углекислый газ лучше всего в металлических баллонах. При температуре более 31⁰С давление в баллоне может достигнуть критического и жидкий СО 2 перейдет в сверхкритическое состояние с резким подъемом рабочего давления до 7,35 МПа. Металлический баллон выдерживает внутреннее давление до 22 МПа, поэтому диапазон давления при температурах свыше тридцати градусов признается безопасным.

Газировка, вулкан, Венера, рефрижератор – что между ними общего? Углекислый газ. Мы собрали для Вас самую интересную информацию об одном из самых важных химических соединений на Земле.

Что такое диоксид углерода

Диоксид углерода известен в основном в своем газообразном состоянии, т.е. в качестве углекислого газа с простой химической формулой CO2. В таком виде он существует в нормальных условиях – при атмосферном давлении и «обычных» температурах. Но при повышенном давлении, свыше 5 850 кПа (таково, например, давление на морской глубине около 600 м), этот газ превращается в жидкость. А при сильном охлаждении (минус 78,5°С) он кристаллизуется и становится так называемым сухим льдом, который широко используется в торговле для хранения замороженных продуктов в рефрижераторах.

Жидкая углекислота и сухой лед получаются и применяются в человеческой деятельности, но эти формы неустойчивы и легко распадаются.

А вот газообразный диоксид углерода распространен повсюду: он выделяется в процессе дыхания животных и растений и является важной составляющей частью химического состава атмосферы и океана.

Свойства углекислого газа

Углекислый газ CO2 не имеет цвета и запаха. В обычных условиях он не имеет и вкуса. Однако при вдыхании высоких концентраций диоксида углерода можно почувствовать во рту кисловатый привкус, вызванный тем, что углекислый газ растворяется на слизистых и в слюне, образуя слабый раствор угольной кислоты.

Кстати, именно способность диоксида углерода растворяться в воде используется для изготовления газированных вод. Пузырьки лимонада – тот самый углекислый газ. Первый аппарат для насыщения воды CO2 был изобретен еще в 1770 г., а уже в 1783 г. предприимчивый швейцарец Якоб Швепп начал промышленное производство газировки (торговая марка Schweppes существует до сих пор).

Углекислый газ тяжелее воздуха в 1,5 раза, поэтому имеет тенденцию «оседать» в его нижних слоях, если помещение плохо вентилируется. Известен эффект «собачьей пещеры», где CO2 выделяется прямо из земли и накапливается на высоте около полуметра. Взрослый человек, попадая в такую пещеру, на высоте своего роста не ощущает избытка углекислого газа, а вот собаки оказываются прямо в густом слое диоксида углерода и подвергаются отравлению.

CO2 не поддерживает горение, поэтому его используют в огнетушителях и системах пожаротушения. Фокус с тушением горящей свечки содержимым якобы пустого стакана (а на самом деле — углекислым газом) основан именно на этом свойстве диоксида углерода.

Углекислый газ в природе: естественные источники

Углекислый газ в природе образуется из различных источников:

  • Дыхание животных и растений.
    Каждому школьнику известно, что растения поглощают углекислый газ CO2 из воздуха и используют его в процессах фотосинтеза. Некоторые хозяйки пытаются обилием комнатных растений искупить недостатки . Однако растения не только поглощают, но и выделяют углекислый газ в отсутствие света – это часть процесса дыхания. Поэтому джунгли в плохо проветриваемой спальне – не очень хорошая идея: ночью уровень CO2 будет расти еще больше.
  • Вулканическая деятельность.
    Диоксид углерода входит в состав вулканических газов. В местностях с высокой вулканической активностью CO2 может выделяться прямо из земли – из трещин и разломов, называемых мофетами. Концентрация углекислого газа в долинах с мофетами столь высока, что многие мелкие животные, попав туда, умирают.
  • Разложение органических веществ.
    Углекислый газ образуется при горении и гниении органики. Объемные природные выбросы диоксида углерода сопутствуют лесным пожарам.

Углекислый газ «хранится» в природе в виде углеродных соединений в полезных ископаемых: угле, нефти, торфе, известняке. Гигантские запасы CO2 содержатся в растворенном виде в мировом океане.

Выброс углекислого газа из открытого водоема может привести к лимнологической катастрофе, как это случалось, например, в 1984 и 1986 гг. в озерах Манун и Ньос в Камеруне. Оба озера образовались на месте вулканических кратеров – ныне они потухли, однако в глубине вулканическая магма все еще выделяет углекислый газ, который поднимается к водам озер и растворяется в них. В результате ряда климатических и геологических процессов концентрация углекислоты в водах превысила критическое значение. В атмосферу было выброшено огромное количество углекислого газа, который наподобие лавины спустился по горным склонам. Жертвами лимнологических катастроф на камерунских озерах стали около 1 800 человек.

Искусственные источники углекислого газа

Основными антропогенными источниками диоксида углерода являются:

  • промышленные выбросы, связанные с процессами сгорания;
  • автомобильный транспорт.

Несмотря на то, что доля экологичного транспорта в мире растет, подавляющая часть населения планеты еще не скоро будет иметь возможность (или желание) перейти на новые автомобили.

Активное сведение лесов в промышленных целях также ведет к повышению концентрации углекислого газа СО2 в воздухе.

CO2 – один из конечных продуктов метаболизма (расщепления глюкозы и жиров). Он выделяется в тканях и переносится при помощи гемоглобина к легким, через которые выдыхается. В выдыхаемом человеком воздухе около 4,5% диоксида углерода (45 000 ppm) – в 60-110 раз больше, чем во вдыхаемом.

Углекислый газ играет большую роль в регуляции кровоснабжения и дыхания. Повышение уровня CO2 в крови приводит к тому, что капилляры расширяются, пропуская большее количество крови, которое доставляет к тканям кислород и выводит углекислоту.

Дыхательная система тоже стимулируется повышением содержания углекислого газа, а не нехваткой кислорода, как может показаться. В действительности нехватка кислорода долго не ощущается организмом и вполне возможна ситуация, когда в разреженном воздухе человек потеряет сознание раньше, чем почувствует нехватку воздуха. Стимулирующее свойство CO2 используется в аппаратах искусственного дыхания: там углекислый газ подмешивается к кислороду, чтобы «запустить» дыхательную систему.

Углекислый газ и мы: чем опасен СO2

Углекислый газ необходим человеческому организму так же, как кислород. Но так же, как с кислородом, переизбыток углекислого газа вредит нашему самочувствию.

Большая концентрация CO2 в воздухе приводит к интоксикации организма и вызывает состояние гиперкапнии. При гиперкапнии человек испытывает трудности с дыханием, тошноту, головную боль и может даже потерять сознание. Если содержание углекислого газа не снижается, то далее наступает черед – кислородного голодания. Дело в том, что и углекислый газ, и кислород перемещаются по организму на одном и том же «транспорте» – гемоглобине. В норме они «путешествуют» вместе, прикрепляясь к разным местам молекулы гемоглобина. Однако повышенная концентрация углекислого газа в крови понижает способность кислорода связываться с гемоглобином. Количество кислорода в крови уменьшается и наступает гипоксия.

Такие нездоровые для организма последствия наступают при вдыхании воздуха с содержанием CO2 больше 5 000 ppm (таким может быть воздух в шахтах, например). Справедливости ради, в обычной жизни мы практически не сталкиваемся с таким воздухом. Однако и намного меньшая концентрация диоксида углерода отражается на здоровье не лучшим образом.

Согласно выводам некоторых , уже 1 000 ppm CO2 вызывает у половины испытуемых утомление и головную боль. Духоту и дискомфорт многие люди начинают ощущать еще раньше. При дальнейшем повышении концентрации углекислого газа до 1 500 – 2 500 ppm критически , мозг «ленится» проявлять инициативу, обрабатывать информацию и принимать решения.

И если уровень 5 000 ppm почти невозможен в повседневной жизни, то 1 000 и даже 2 500 ppm легко могут быть частью реальности современного человека. Наш показал, что в редко проветриваемых школьных классах уровень CO2 значительную часть времени держится на отметке выше 1 500 ppm, а иногда подскакивает выше 2 000 ppm. Есть все основания предполагать, что во многих офисах и даже квартирах ситуация похожая.

Безопасным для самочувствия человека уровнем углекислого газа физиологи считают 800 ppm.

Еще одно исследование обнаружило связь между уровнем CO2 и окислительным стрессом: чем выше уровень диоксида углерода, тем больше мы страдаем от , который разрушает клетки нашего организма.

Углекислый газ в атмосфере Земли

В атмосфере нашей планеты всего около 0,04% CO2 (это приблизительно 400 ppm), а совсем недавно было и того меньше: отметку в 400 ppm углекислый газ перешагнул только осенью 2016 года. Ученые связывают рост уровня CO2 в атмосфере с индустриализацией: в середине XVIII века, накануне промышленного переворота, он составлял всего около 270 ppm.

Поделитесь с друзьями или сохраните для себя:

Загрузка...